Myotomal slow muscle function of rainbow trout Oncorhynchus mykiss during steady swimming.
نویسندگان
چکیده
Strain and activity patterns were determined during slow steady swimming (tailbeat frequency 1.5-2.5 Hz) at three locations on the body in the slow myotomal muscle of rainbow trout Oncorhynchus mykiss using sonomicrometry and electromyography. Strain was independent of tailbeat frequency over the range studied and increased significantly from +/-3.3 % l0 at 0.35BL to +/-6 % at 0.65BL, where l0 is muscle resting length and BL is total body length. Muscle activation occurred significantly later in the strain cycle at 0.35BL (phase shift 59 degrees) than at 0.65BL (30 degrees), and the duration of activity was significantly longer (211 degrees at 0.35BL and 181 degrees at 0.65BL). These results differ from those of previous studies. The results have been used to simulate in vivo activity in isolated muscle preparations using the work loop technique. Preparations from all three locations generated net positive power under in vivo conditions, but the negative power component increased from head to tail. Both kinematically, and in the way its muscle functions to generate hydrodynamic thrust, the rainbow trout appears to be intermediate between anguilliform swimmers such as the eel, which generate thrust along their entire body length, and carangiform fish (e.g. saithe Pollachius virens), which generate thrust primarily at the tail blade.
منابع مشابه
Pelvic fin locomotor function in fishes: three-dimensional kinematics in rainbow trout (Oncorhynchus mykiss).
The paired pelvic fins in fishes have been the subject of few studies. Early work that amputated pelvic fins concluded that these fins had very limited, and mainly passive, stabilizing function during locomotion. This paper is the first to use three-dimensional kinematic analysis of paired pelvic fins to formulate hypotheses of pelvic fin function. Rainbow trout (Oncorhynchus mykiss) were filme...
متن کاملA molecular mechanism for variations in muscle function in rainbow trout.
Salmonids undergo a developmental transition from parr to smolt that involves a number of physiological and morphological changes. In recent years, my laboratory has studied shifts in red muscle function at this parr-smolt transformation (PST) in rainbow trout, Oncorhynchus mykiss. Parr red muscle has faster contraction kinetics than smolts, including faster rates of activation and relaxation a...
متن کاملPower production during steady swimming in largemouth bass and rainbow trout.
Steady swimming in fishes is powered by the aerobic or red muscle, but there are conflicting theories on the relative roles of the anterior and posterior red muscle in powering steady swimming. To examine how red muscle is used to power steady swimming in rainbow trout (Oncorhynchus mykiss), electromyographic (EMG) and sonomicrometry recordings were made of muscle activity in vivo. These data w...
متن کاملParvalbumin expression in trout swimming muscle correlates with relaxation rate.
Rainbow trout (Oncorhynchus mykiss) display longitudinal and developmental shifts in muscle relaxation rate. This study aimed to determine the role of variations in parvalbumin content in modulating muscle relaxation. Parvalbumin is a low molecular weight protein that buffers myoplasmic Ca2+ and enhances muscle relaxation. In some fish, longitudinal variations in muscle relaxation have been lin...
متن کاملAerobic muscle function during steady swimming in fish
# 2002 Blackwell Science Ltd 63 Abstract Axial swimming in ¢sh varies across a range of body forms and swimming modes. Swimmingbyeels, tunas,mackerels, scup, rainbow trout and bass span this range from high curvature anguilliform swimmers to rigid body thunniform swimmers. Recent work on these and other species has elucidated an impressive array of solutions to the problem of how to use the red...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 201 Pt 10 شماره
صفحات -
تاریخ انتشار 1998